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Introduction

The idea that the electron is a spinning top was introduced by Uiilen- 
beck and Goudsmit (1925) fifty years ago and has been touched upon at 
numerous occasions ever since. Dirac (1928) found “a great deal of truth in 
the spinning electron model, at least as a first approximation”, but he did 
not make any attempts to interpret the “other dynamical variables” required 
“besides the co-ordinates and momenta of the electron”. Instead, he created 
a purely mathematical model of the electron, in which these variables are 
represented by 4x4 matrices. The resulting equation leads to complete 
agreement with experiment and is, therefore, the equation of motion for the 
electron.

Several authors have felt the need of some type of interpretation of the 
internal variables in Dirac’s theory, and have explored the quantum theory 
of rotating systems with this in mind. Thus, Bopp and Haag (1950) drew 
attention to the fact, that the differential operators describing the angular 
momentum of a two particle system admit eigenfunctions with half-integral 
quantum numbers. Yet, they found that no associated Schrôdinger equation 
could make use of these through its regular solutions.

These findings, together with the generally accepted view that it is 
impossible to formulate a satisfactory relativistic description of a 3-dimens
ional rotor, have led to the consideration of more complex models with added 
degrees of freedom. At the same time, the scope has been widened by 
extending the group of particle characteristics to be described to include e.g. 
isospin and hypercharge. Ai.lcock (1961), in his investigations, considers a 
particle model based on two 3-dimensional rotors rotating with respect to 
each other. Other authors (van Winter, 1957; Hillion et Vigiér, 1958; 
Bohm, Hillion and Vigiér, 1960) consider instead a 4-dimensional space
time rotor. A comprehensive list of the many diverse classical and quantum 
mechanical papers in the field is presented in the monograph by Corben 
(1968).

A study of the various sophisticated models does admittedly leave one 
with the impression, that the whole field has acquired a somewhat meta
physical character. It is at least fair to say that no simple alternative to 
Dirac’s purely mathematical model af the electron has emerged.
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The alternative does exist, however, as we show in the present paper. 
It is in fact nothing but the elementary 3-dimensional rotor governed by 
relativistic quantum mechanics. The dynamics of the rotor is in all respects 
identical with the dynamics of a Dirac particle, and hence it gives us new 
and equally exact ways of visualizing the sometimes rather complex be
haviour of electrons.

To make the following presentation reasonably self-contained we sum
marize the most relevant properties of a 3-dimensional rotor in section 2. 
Section 3 discusses the relativistic description of a spinless particle; the 
extension to the relativistic rotor as a model of a particle with spin is cons
idered in section 4, and the possible forms of a local Hamiltonian are derived 
in section 5. In agreement with Dirac’s conclusions, it is found that only 
for s = y can one construct a local relativistic Hamiltonian (the Dirac 
Hamiltonian), and the rotor is in this case an asymmetric top. The Dirac 
equation and its solutions are then discussed in sections 6-12 in the light 
of the preceding sections. The invariance group of the problem is described, 
and detailed expressions are given for all symmetry operations of this group. 
Throughout the paper we operate with an unassigned indicator, reflecting 
the fact that the basic commutator relations may be written in two ways, 
either with an i or a-z.

2. The quantum mechanical rotor

Consider a right handed Cartesian coordinate system So, with axes 
Y, Z and origin 0. Two points

ri = (xi, z/i, zi), r2 = (æ2, IJ2, Z2) (1)

define a second right handed system 5 with origin 0 and axes specified by
the unit vectors 

C3
rif2 sinu

F] X F9 ei x e-2,
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where ii is the angle between ri and r-2- The orientation of S with respect to 
So may be specified by three Euler angles a, ß, y such that (Rose 1957) S is 
obtained from So by

1) a rotation about the Z-axis through the angle a,
2) a rotation about the new Y-axis through the angle ß,
3) a rotation about the new Z-axis through the angle y.

The following relations are then valid:

ri cos a cos ß sin

cosacossin a cos ß sinri

X2 = — **2 cos a cos ß sin sin a cos

f/2 - ?2 cosacossin a cos ß sin

The components si, S2, .S3 of the vector operator

-s = th [ri x Vi + 1*2  x V2]

(4)

(5)

are the generators for rotations of S about the X, Y, Z axes, respectively. 
A finite rotation through an angle e about a unit vector n is effected by the 
operator

Q(n, e) = exp(-ten • s/IY). (6)

The “indicator” t is either i or -i, with i being the ordinary imaginary unit. 
Obviously, Q(n, e) is independent of the value assigned to the indicator.

Substitution of (3) and (4) into (5) gives:
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d 
dß

cos a d 
sin ß dy

d d
cos a -—I- cot ß sin a — 

dß dx
sin a d
sin ß dy

d
*s'3 = “ • dx

The operators
Ci = s • ei, C2 = s • 62, C3 = S • 63

commute with every component of s and have the form:

Ci =

C2 =

They satisfy the “anomalous” commutator relations 

whereas the operators si, S2, S3 satisfy the “normal” relations

[Si,S;] = ihSijkSk.

(7)

(8)

(9)

(10)

(H)

£$;*  is the Levi-Civita symbol, antisymmetric in all three indices (£123 = 1), 
and the convention of summing over repeated indices is understood.

We also note, that

Id/. d \ 1 / d2 d2
s2 = — h2 —------- (sind—|H----------1— H-------sinßdßy dß) sin2ß\da2 dy2 

where
s2 = siSi = (13)

The expressions (5) — (12) are, of course, well known. They are re
produced here for the sake of reference and in order to stress, that the s/ 
and Ci operate directly on the “dreibein” defined by 61, e-z and 03, or equiva
lently, on functions depending on the orientation of the dreibein through x, 
ß and y. Thus, we do not consider r± and Z2 as coordinates of particles, they

2 cos/? d2 
sin2/? dxdy
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are merely mathematical points by means of which the dreibein may be 
defined, ri, T2 and n are, in accordance with this, dummy coordinates which 
drop out of the description as soon as the Euler angles are introduced. It is 
in this way that it becomes possible to separate the fact that a system may 
have an orientation, from more or less arbitrary speculations concerning an 
internal distribution of matter. That such a separation can be made is, of 
course, the basic assumption behind most efforts mentioned in the Introduct
ion — with the work of Bopp and Haag as an exception.

The vector ri and 72 may play a very different role in other contexts, as in 
the theory of two-electron atoms (Hylleraas, 1929; Breit, 1930) where 
they do represent particle coordinates, ri, /’2 and u are then actual internal 
variables, of the greatest importance for the character of the atomic states. 
The construction of internal coordinate systems similar to ours has conse
quently been studied by several authors. A review is due to Bhatia and 
Temkin (1964).

Let us now assume that the dreibein discussed above describes the 
orientation of an elementary particle with respect to So. The probability 
amplitude for this orientation is then a wavefunction built over the simultane
ous eigenfunctions 7)®wra(a, ß, y) of the commuting operators s2, S3 and £3. 
These eigenfunctions have been known since the early days of quantum 
mechanics, and up-to-date presentations of their properties, as well as the 
various phase conventions introduced in the course of time, may be found 
in the books by Bohr and Mottelson (1969) and Judd (1975). They 
satisfy the relations:

mn

s Ds■’S l7mn

F l)s^3 mn

s(s + l)^2^n 

mhDmn 

R^mn

(s = 0,|,l...),

(m = s, s - 1,. . . , - s), 

(n = s, s — 1,. . . , — s).

(14)

For each value of s they deline a linear function space Qs of dimension 
(2s + l)2. Properly normalized they satisfy the orthonormality condition:

<Dmn\ DSm'n'> = sinßdß dyDsmn(oc, ß, y)*D sm,n,(x, ß, y)
Jo Jo Jo

£ £ £
°ss’ °mm' °nn" >

(15)

and the phases may be chosen such that

(sx ± ts2)Dsmn = h[(s T m) (s ± m + l)]1/2^±1>n, 

(CiTtC2)D^n = Lu(s T n)(s ± n + 1)]1/2D^>W±1.
(16)
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for .s =

0! - Z)î> 1
12 9 /. - (S.-r2)-''-cos-eta/2e^/2,

2

02 = /asin-e-'a/2e^/2,2

03 1*1- ■/. ■ - (8.12) ~1/2sin - elxl2e~iyl2
2

=
/A,

Z2» -■/. - (S* 2)’ I/acos-e-fa/2e-T/2
2

It was shown by Euleb, in his pioneer work on the motion of rigid bod
ies two hundred years ago, that the configuration space for a 3-dimensional 
rotor is the 4-dimensional unit sphere (see, e.g. Whittaker, 1904), each 
orientation of the rotor corresponding to two points on the sphere. The 
functions l)smn maY accordingly be viewed as 4-dimensional spherical 
harmonics (Hund, 1928), and is an irreducible function space under the 
operations of 0(4), the 4-dimensional orthogonal group. The operators St
and Ci represent the generators of 0(4). Il is for certain purposes convenient 
to replace them by the operators

^i = >S't ~ Ci, I

, (18)
%i — Si + Ci,

which obey the commutator relations:

= ih^ijk^-k,

'^i,X.Å ~ iti^ijkXk, J (19)

[/i ’ Xil = lheijk^k •

Having characterized the functions from which the probability amplitude 
for the orientation of a 3-dimensional rotor may be constructed, we shall 
pass on to a discussion of its dynamics. Our basic assumption will be, that 
it is possible to construct a Hamiltonian of the form

= ^(si,S2,S3; Ci»C2, C3; a), (20)

with a referring to a set of external variables which commute with the internal 
variables st and Ci- It follows, that

[H,s2] = 0, (21)
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and hence thai the eigenfunctions of H may be written as
(28 + 1)*

= 2 (22)
i = 1

where (i = 1, 2, . . . , (2s + l)2) are the functions Dsmn(a, ß, y), and fc 
are functions of the external variables.

Each function space Qs will thus give rise to its own set of eigenfunctions. 
Inded, it will turn out that the very form of H will depend on the quantum 
number s, and that only for s = -j. is it possible to construct a local Hamil
tonian. These results are consequences of the constraints imposed by the 
theory of special relativity, and discussed in the following section.

3. Relativistic description of a spinless particle

The special theory of relativity requires that the laws of physics be 
invariant under the operations of the inhomogeneous Lorentz group. Let 
us, by way of introduction, sketch the implications of this requirement in the 
case of a free particle without spin.

With
= (æi,æ2,æ3, ict) (23)

denoting a general space-time point, we introduce the operators

d

and

''/• ■ ~‘hav
Ua'/Ll

(24)

~ flPv ~ X’vP[i ■ (25)

The following commutator relations are then valid:

(26)
ÏP/i’Pv] = (27)

(28)

L> På ] = ^ (åPv ~ ôvÀP/j.)• (29)

We adopt the convention that greek indices take on the values from 1 to 4, 
italic indices the values from 1 to 3.

The operators L^lv represent the generators of 0(4). They are antisym
metric in // and v, and hence one introduces new operators which are all 
independent, viz.
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U ~ &ijm Ljm >

kl = I-i^.

The relations (28) are then replaced by

[h Aj] — ihZijmlm,

\Jt,kj] = m f

[ki, kj ] = ihetjm Im , 

which are similar to (19).
Next, we define operators for finite transformations:

F(a) = exp(-<fli/Jï/h),

U(t) = exp(- AT/u/h), 

7?(m,s) = exp(- let 'lilh), 

/l(rc',r/) = exp(-ir/ikilh),

characterized by the six real parameters at, et, and the four imaginary 
parameters r and pt. n and n are real unit vectors such that en = (si, £2, £3) 
and T/n = (^1,^2, ^3). F generates a spatial translation a, U a time displace
ment Tl(ic), and R a rotation through the angle £ about n. A generates a 
Lorentz transformation in the direction n corresponding to the relative 
velocity V such that

tanz; = iV/c. (33)

The transformations are all independent of the value assigned to the indi
cator i.

All F and U and products thereof represent the group ST of translations 
in Minkowski space. All R and A and products thereof represent the proper, 
orthochronous, homogeneous Lorentz group The semidirect product of 

and is the proper, orthochronous, inhomogeneous Lorentz group 
££“Q. The representations of these groups, as well as of the extensions 

obtained by adding the operators for space and time inversion, have been 
thoroughly studied. We refer to papers by Wigner (1939), Bargmann and 
Wigner (1948), and to the books by Roman (1960), Lyubarskii (1960), and 
Lomont (1959).

A representation of for a single particle without spin is obtained by 
constructing a linear function space which is invariant under the operators 
(24) and (25). As basic functions we may choose eigenfunctions of the 
commuting operators pi,pz,ps, and p$, i.e. functions of the general form
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I Tri, ^2, ^3, ^o> = exp(rrr ■ r//z)exp(-zc^of/A). (34)

The operator
/lå2 \

zw.-* 2^-?2) (35)
commutes with all operators in (24) and (25) and hence with all operators 
in the set (32). A function space which is irreducible under the operators 
representing AAo will consequently be characterized by a single eigenvalue 
of P^P^ • Since

= (tt2 - ^o)|tt>^o>> (36)

we have the requirement:
2 2 , „2 27t0 = n + mQc , (37)

with niQ being a constant. This constant is identified with the mass of the 
particle. We further identify it with the momentum and c%o with the kinetic 
energy:

Ekin = CJlQ • (38)

mo and %o are, accordingly, assumed to be non-negative; (it, mo) is a time
like four-vector, and

3To = j/^ + møC2. (39)

It is easy to verify that all functions of the form (34), with the same n?o, 
may be generated from one function in the set by use of the operators R 
and A of (32). A convenient choice for the representative function is

I 0, 0, 0, imocy = exp(-tn?oc2f/h) when mo > 0, (40)

I 0, 0,1, z > exp [t(æ3 — cf)//i] when mo = 0. (41)

We get, for instance:

Zt(0, 0,1,??) I 0, 0, 0, imoc > = exp(z7ca?3//i)exp(-zc|/tt2 + 7nQC2Z//i) |
I (42)

= I 0, 0, %, z%o>, J
with

tan?? = m/j/jr2 + zz?qC2 = icn/Ekin^ (43)

By comparing with (33) we obtain the usual expression for the velocity of 
the particle:

V = C27tlEkin- (44)
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Similarly we get:

/l(0, 0, 1, r/) | 0, 0, 1, z> = exp [c7r'(.T3 - <7)//i j = | 0, (),%', in' >, (45)
where

% =exp(-h/). (46)

Let us now consider the equation of motion for a free spinless particle. 
The existence of such an equation is, of course, a necessary condition for 
being able to predict the future from the instantaneous situation. An equation 
of motion must have the form

dw

with -ip being the wavefunction and H a time independent operator, the 
d

Hamiltonian of the particle. FI and th— are thus required to be equivalent 

operators, and this implies that the relations (27)—(29) must remain un
affected by the substitution

/M - H. (48)
c

The relations (27)-(29), with the substitution (48), represent what has been 
called by Dirac “relativistic dynamics in the instant form’’ (Dirac, 1949). 
The problem of constructing a dynamical theory is tantamount to finding an 
II that will satisfy the substituted relations.

The operators ± p2 + in^c2, with mo being an arbitrary constant, will 
satisfy the relations in our case, mo is again fixed as the mass of the particle, 
and a comparison with (34) and (47) shows, that we must choose

H = cj/jo^Tmp. (49)

The solution for the Hamiltonian is thus unique. Its eigenvalues represent 
the kinetic energy according to (38).

4. The relativistic rotor

We shall now extend the treatment of the previous section to the case of a 
quantum mechanical rotor, as a model of a particle for which it is possible 
to talk about an orientation in space. The coordinates define the position 
of the particle by specifying the origin of the coordinate system So, in space 
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and time. The Euler angles a,ß,y specify the orientation of the particle, i.e. 
the orientation of S with respect to So.

A first necessary condition for being able to construct a relativistic 
dynamics for the rotor is the existence of an algebra similar to the one given 
through the relations (27)-(29). The four-momentum (24) is defined as 
before, but the operators L/lv must be supplemented with operators built 
over the internal generators si and Ci, as given by (7) and (9). Thus we 
define :

J/jv ~ Lpv + s/m” (50)
and similar to (30):

Ji — 2 ^ijmJjm >

Ki ~ Ji4,

Si —

Xi = Sj4. J (51)

The operators JIIV and pfl must satisfy the relations (27)—(29) with Jfiv 
substituted for L^v. The operators (51) must satisfy relations similar to (31),
in particular:

Sj , Sj ] — lllEijmSm ,

|_Si,Xj] = lllEijm^m •> (52)
, Xj] = iJiEijmSm ■

We have already, by (18), constructed a set of operators satisfying (52), 
but they cannot be used for the present purpose, because it is essential that 
the Si in (52) be identical with the Si in (7). This is dictated by the form of 
the rotation operator (6).

With the Si fixed by this requirement, it only remains to determine the 
Xi. The second of the relations (52) shows that k must be equal to x times an 
operator b commuting with s:

K = bs, (53)

and because of (13) we may take this b to be a function of the Ci alone. The 
third of the relations (52) shows finally that the condition

52 = 1 (54)
must hold for b.

In looking for an operator that will satisfy (54) one must exclude the 
trivial solutions b = ±1, since s and k must be linearly independent. This 
implies, that it is impossible to find a universal expression for b, but with 
(20) and (22) in mind it becomes meaningful to solve (54) within each 
function space Qs separately (cf. (14)). In this way one obtains the following 
semigeneral solution, independent of the value assigned to it
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for s integer, 

for s half-integer,

Nr. 12

b = exp(-%/e • s/7z) 

b = z exp(—• s/h)
(55)

with e being an arbitrary unit vector in the internal coordinate system S.
Since no dynamical preference has been given to any of the axes of S so 

far, we can now’ introduce such a preference by fixing the direction of e. 
A convenient choice at the present stage is

Thus wre obtain:
e = e3.

2 L
b = - -7 43 lor s = 7,

h i

2 9b = 1----- Cl for s = 1,
7i2 3

etc.

(56)

(57)

Having determined the operators of the basic algebra we obtain the 
operators for the finite transformations of ^~^o by multiplying R(n, e) in 
(32) with the operator (6), i.e.

Q(n,e) = exp(- tEiSi/h.). (58)

The operator A(n',Tf) is similarly to be multiplied with

A(m',^) = exp(-ir/iKi/li). (59)

These operators are again independent of the value assigned to 1.
The operator p^p^ of eqn. (35) will also commute with all operators in 

the new algebra. The irreducible representations of AT A£o are consequently 
spanned by functions of the form

= ^(a,^,y;ir,/no)!^, Z7r0> (60)

where | tt, z%0> is given by (34), and are functions of the internal coordinat
es, depending parametrically on s, tt and mo. The relation (39) is still valid 
and the energy is given by (38) as before.

Let us assume, in what follows, that mo 4= 0. The form of 99® is then 
completely given, once it is known for ir = 0. The relation is:

(psj(cc,ß,y;-TT,mo') = ??)(pj(a, ß, y ; 0,/n0), (61)

with T] given by (43). We are thus left with the problem of classifying 
(jpsj(x, ß, y ; 0, /n0) further with respect to the symmetry of 3~AAo-
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At this point we note that there is another operator besides p^pfl which 
commutes with all operators in the basic algebra, namely w^w^, where

lv[i = (/> * * +p4s, ~ P ■ s), (62a)

(Bargmann and Wigner, 1946). Using (53) and (54) we get, that

= P/iP^iSi. (62b)

This new invariant gives the mathematical justification for the label s in (60).
The components of do not commute with each other. We have, 

however, the very important result:

= 0, (63)

according to which each ip*  may be taken as an eigenfunction for one of the 
new wfl as well. We note, in particular, that •y»® for it = 0 may be chosen as 
an eigenfunction of /?4S3.

For the sake of completeness we also note, that p^wfl is an invariant, 
but since it is identically zero, it is of no use in the present context.

The functions are linear combinations of the (2s + l)2 functions 
Dsmn(a,ß,y) of section 2, but it is readily seen that the 2s + 1 functions cor
responding to a given value of n constitute an invariant function space under 
all st and x$. Each value of n will thus give rise to an irreducible represent
ation of with the functions equal to the functions D^ra(a,/?, y),
m = s, s - 1, . . . , - s.

The 2s + 1 irreducible representations (n = s, s - 1, . . . , - s) obtained in 
this way are, however, all equivalent. This follows from general discussions 
on the irreducible representations of (see references following eqn. 
(33)), according to which the representative functions for p = 0 are character
ized as spanning irreducible representations of 7?(3), the 3-dimensional real 
rotation group. I?(3) is in this context the little group associated with the 
four-vector (0, 0, 0, imoc).

We have thus arrived at the conclusion, that only for s = 0 (which is the 
case already studied in the previous section) is there no redundant degeneracy 
in the classification of the rotor states When s =)= 0 we are left with a 2s + 1 
fold degeneracy.

Any function of the form (60) will satisfy the Schrödinger equation (47) 
with the Hamiltonian (49). This is, however, of little interest in the present 
context, since such a Hamiltonian does not effect the internal coordinates at 
all. We shall consequently look for a more general Hamiltonian by recon- 
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sidering the basic algebra and require that it be satisfied with the substi
tution (48).

The variable xt = ict commutes with all operators of the substituted 
algebra, and may therefore, without loss of generality, be set equal to zero. 
Thus, we get the substituted operators:

(64)I

(65)= 0,

i
Kt = - xi II + Xi,

c

and the algebraic equations involving II become: 

[H,Pi] 

[H, Ji] 0, (66)

[pi,Kj] = -hôij-H, (68)
i c

= itiEijmKm, (69)

= Lh.EijmJm.

In addition, we have the invariance relation

II2 = c2 p2 + /UqC4. (71)

5. The local Hamiltonians

In searching for solutions to the above relations we begin by noting, 
that (65) and (66) imply that æi,æ2>æ3 and <x,ß,y are cyclic coordinates, i.e. 
II must be of the form

H = H(si,Ci,pf, (72)

as alredv anticipated by (20). The relations (68) and (69) are then auto
matically satisfied, whereas (67) imposes the conditions
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- [H, xj] - - [H, xj] H = ihpj. (73)
c C“2

The relation (70) is automatically satisfied whenever (73) is.
The necessary conditions on H are thus contained in (66), (71) and (73).
It follows from (71), as well as from (73), that if H is a polynomial in 

pi, then this polynomial must be of the first degree. Any local Hamiltonian 
must thus be linear in the momentum operators. The only other conceivable 
solution is the non-local form

H = a|/c2p2 + /HqC4, a2 = 1 (74)

with a being a function of the Si and Ci-
A short consideration of (66) and (73) shows, that a must commute 

with every Si and x/, and hence the only possible values are ± 1 and ± b, 
with b given by (55) and (57).

We shall not, however, consider the non-local Hamiltonians further, but 
instead confine the attention to local Hamiltonians, as the more satisfactory 
type of operators from a physical point of view.

A local Hamiltonian is, as mentioned above, necessarily linear in the 
momentum operators. Hence, we write it as

H = 2 + pipj, (75)

with 2 and /zj being functions of s$ and Ci- Insertion in (68) shows, that 2 must 
be a function of the Ci alone, and that pj = psj with p depending only on the 
Co Thus we have:

H = 2(Ci) + p(£i)(s ■ pb (76)

To determine the functions 2 and p we insert (76) in (73) and compare 
the coefficients of pi, pz and p3 in turn. It is then found that a necessary 
condition for (73) to be satisfied is, that s^ = Sg = S3 = a non-vanishing 
constant. This is only possible if the operators act in the function space £?i/a,
in which case :

SfSj + SjSi — jVÔii, ! (77)

and
Si Sj — ^hSijkSk, 1 z ,

(78)
Çicj = — 2^etik^k- 1

Mat.Fys.Medd.Dan.Vid.Selsk. 39, no. 12. 2
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Hence il follows, that it is impossible to tarn a 3-dimensional rotor into a 
relativistic system with a local Hamiltonian, unless it is endowed with an s 
quantum number of y.

We proceed, then, by assuming the validity of (77) and (78). A and p are 
then linear function of C1,C2,C3. We shall furthermore deviate from (56) and 
(57) by choosing ei as the preferred axis when defining k, i.e. we put

e = ei, (79)
and hence

2 L
« = (80)

Insertion of (77), (78) and (80) in (73) and further comparison of the 
coefficients of pi, p2 and ps leads to the unique result

4c 
= (so

Finally one obtains, from the terms independent of pit

ÂC1 + C1Â = 0. (82)

This relation shows, in the light of (77), that z must be a linear combination 
of £2 and £3, and since no preference has been given to any of the axes 
perpendicular to a we may set

A = A£3, 
with A being a constant.

Thus we obtain the Hamiltonian

(83)

4c
H = A £3 + — £i(s -p). (84)

To determine A we square II and compare with (71), while using (77). 
This leads to the values

and hence :

2
A = ± - ni0 c2,

h (85)

2 4c
H = ± -

h
71?oC2C3 + ~ £1($ •/>).

FF (86)

The eigenfunctions of II are of the form (22) with s = i.e.
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Vk(r’x>ß>y) = 2 ^,fc(r)ö*( a’ß>7)’ (87)
i = 1

where Oi, 62, Ø3, 04, are the functions specified by (17). The equation of 
motion is of the form (47). It becomes identical with the Dirac equation 
when transformed to a matrix representation.

into the equation of motion (47), i.e.

6. The Dirac equation

The transformation 
expansion

mentioned is obtained by substituting the general

= 2 Vt(r,t)di(<x.,ß,y) (88)
i = 1

(47)

with H as given by (86). The inner product is then formed with Øi, O2, Ø3, O4 

in turn and the orthonormality relations (15) utilized. As a result one obtains:

dip
( ± inoc2ß + ca • p)ip = th—, (89)

where ip is a column vector with ipi, ipz, ip3, ipi, of (88) as components, and

ß =
I O’

0 -I
(À- = 1,2,3). (90)

I is the two-dimensional unit matrix, and

0 1’ 0 — 1 T o’
(71 = , <72 = , <73 =

1 0 t 0 0 - 1
(91)

become the Pauli spin matrices when 1 is assigned the value i.
Eqn. (89), with the upper sign in front of inoc2ß and t = i, is in fact the 

Dirac equation in its Hamiltonian form. The ambiguity in sign of the first 
term will be commented on in section 13. Until then we shall adopt the plus
sign in (86), and write 

H = m0c2^ + ct/s' •/>), (92)
2*
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where the primed operators, introduced for simplicity, are equal to the
2 

corresponding unprimed ones, multiplied by
ll

The present derivation of the Dirac equation is, of course, rather different 
from Dirac’s own, since it is based on a model (albeit a very well-defined 
one) rather than on the purely mathematical properties of hypercomplex 
numbers. The principles underlying the two derivations arc, however, the 
same, and they may therefore supplement each other in a fruitful way. It is 
interesting to note, that the 4-dimensional matrices oi and qi occurring in 
Dirac’s paper (Dirac, 1928) are nothing but the matrix representatives of 

2
our Si and Ci operators multiplied by —. The sign of Q2 is the opposite of 

h
ours, though, and the minus sign in the second of the relations (78) is thus 
absent in Dirac’s equivalent relation.

We shall now consider the solutions of (47) in the light of the previous 
sections, with the aim of showing the coherence of our approach. We close 
the present section with the obvious remark, that the functions (88) are 
independent of the basis chosen in In other words: if one prefers to 
take four orthogonal conbinations of the functions (17) as a new basis, then 
this has no effect upon the analytical form of *P.  The matrix representation of 
(47) will, however, now be different from (89). The fundamental relations 
(77) and (78) will, on the other hand, be satisfied by the matrices in any 
representation. This expresses the so-called representation independence of 
the Dirac equation.

7. The solutions of the Dirac equation

The solutions of the equation

(47)

with H given by (92) are, of course, equivalent to the solutions obtained by 
the more conventional theory, as presented in wellknown textbooks (e.g. 
Bjorken and Drell, 1964; Sakurai, 1967). Referring to the discussion in 
section 4 we may present the results of solving (47) in the following way.

The solutions of (47) span two irreducible representations, Fand 1\ of 
These representations become the complex conjugate of each other, 

when the basis functions spanning them are generated by means of the
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operators (32), (58) and (59), starting from the two complex conjugate pairs
of functions:

0i = 0i(a,/3,y)exp(-nn0c2//h), ]

02 = 02(a,y)exp(-imoc2f/h), |

and
01 = 04(a,/?,y)exp(mioc2f//i), 1

02 = - 03(a,/5, y)exp(t77?oc2//h).

Let us construct the functions obtained by performing a homogeneous 
Lorentz transformation corresponding to the direction

e = tt/ti (95)

and the parameter given by (43).
The functions exp (±imoc2t/Ii) are transormed similar to (42). The Oj 

functions are transformed by means of the operator

Â(e,?y) = exp(—• x//î), (96)

with X given by (80). Introducing the primed operator

this becomes

(97)

(98)

Applying standard trigonemetric formulae in connection with the expression 
(43) for tan rj we obtain

where

c
E I + 7710 C2

(99)

(190)

Thus, we get:

Â(e,rz) =
2

Cl(îT-s')1 (191)



22 Nr. 12

The functions obtained from (93) and (94) are now readily seen to be

(tIz O3 + 7l+ 04)

(%_03 - 7T204)

(%- 01 %z 02)

(%Z 01 + 7t+ 02)

exp (rrr • r//z)exp(- 11 E | t/li),

exp(trr • r/h)cxp(- 11 E | t/lï), 

exp(- rrr • r/7z)exp(t | E | t/h),

exp(- rrr • r//z)exp(t | E | tjti),

(102)

(103)

7T_|_ — 711 i 1^2 • (104)

The functions (192) are eigenfunctions of H and p with eigenvalues 
I EI and it, respectively. The functions (103) are eigenfunctions of the same 
operators with eigenvalues — |E| and — rr.

The function space available for a Dirac particle is the direct sum 
Q ® Q of the two spaces 42 and 42, obtained by operating with all operators of 
the form (32), (58) and (59) on the functions (93) and (94), respectively. 
A function in 42 represents a particle state, a function in 42 an antiparticle 
state. A function with components in both 42 and 42 represents a super
position of a particle and an antiparticle state.

8. Charge conjugation symmetry

There is a one-to-one correspondence between the functions in the spaces 
42 and 42 specified in the previous section, two corresponding functions 
being the complex conjugates of each other. This reflects, that whenever a 
function llJ is a solution of (47), then the same is true for the complex 
conjugate function The process of complex conjugation is thus an invari
ance operation of the theory. In the following we shall identify this operation, 
which we denote by C, with the charge conjugation operation of the con
ventional theory.

The operator effecting the operation C is defined by

CopV = «Ê (105)
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with ~ denoting complex conjugation. It has the obvious property

C = 1. (106)

From the explicit expressions (17) we obtain the following relations, already 
used in passing from (93) to (94):

01 = 04,

02 = - 03,

03 = -02,

04 - 01.

Hence, we get for an arbitrary function of the form (88), i.c.

that
W = 01^1 + 02V>2 + 03^3 + 04^4, (108)

Cop^ = - °3V)2 - (100)

where — in order to facilitate comparisons with the conventional therory - 
we have used * to denote complex conjugation of a function independent ol 
a, ß and y.

This result may conveniently be written as

“o 0 0 1 “

0 0 -1 0

0 - 1 0 0 %
1 0 0 0 T?

(110)

The 4x4 matrix occurring in this relation is readily identified with Dirac’s 
—/2. It is equal to iy2 in the tensor notation by c.g. Bjorken and Drell 
(1964). Our simple definition (105) of the charge conjugation operation is 
then seen to coincide with Bjorken and Drell’s. It dillers from e.g. 
Sakurai’s (1967) in sign. (Definitions in the literature may vary with an 
arbitrary phase factor).

The operators (32), (58) and (59), from which the operators of 
are constructed, are all real (see also (101)). This implies that C commutes 
with all elements of Hence, we may construct the direct product group 

x where
= {£,c}, (Hl)
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E being the identity operation. The function space £?©£>, which contains 
the totality of solutions of eqn. (47), defines then a single irreducible re
presentation of tø x This group is thus an invariance group of the theory.

In the following sections we shall augment this invariance group further 
by adding the space and time inversion operations.

9. Space inversion

The process of space inversion, P, replaces r by - r and thus also p by -p. To determine its effect on the internal axes of the rotor it is necessary 
to go beyond the assumption made in section 2, that the vectors n and of 
eqn. (1) merely represent mathematical points. We must now assume, that 
they in some way or other have a physical significance, such that they are 
replaced by — ri and - r? under inversion.

With this assumption it follows from (2), that the directions of ei and 
C2 are reversed under P, whereas e% is left unchanged. The effect on the 
Euler angles is accordingly:

a -> a, ß -> ß, y -> y + n. (112)

The functions 0i and O2 in (17) are thus multiplied by t under inversion, 
Ô3 and O4 are multiplied by — t. This result is in accordance with the assump
tion of the conventional theory, that space inversion is effected by the matrix 
aß, where ß is defined by (90) and a takes one of the four values ±1, ±i 
(see e.g. Bjorken and Drell, 1964; Sakurai, 1967).

Adopting (112) we see from (7), that si, S2 and S3 are unchanged under 
inversion. (8), as well as (9), shows that Ci and C2 change sign, whereas £3 
remains unaffected.

The relativistic description of a spinless particle is invariant under space 
inversion, i.e. its symmetry group may be extended from 2E0 to p, the 
orthochronous, inhomogeneous Lorentz group. Within the algebra defined 
by the operators (24) and (30) P has the following effect:

p ^ p, p \, l > I, k>k. (113)

The substitution (48) requires that 

H-+H, (114)

a condition which is certainly satisfied by the Hamiltonian (49).
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The relations (113) and (114) must likewise hold for the generators 
associated with the relativistic rotor, if we require that P be a symmetry 
operation in this case as well. In particular, we must require that

s -> s, K - K. (115)

s is, in fact, unaffected by P. But in order that k change sign we must require 
that b, as defined by (53), change sign. Ç3 is unaffected by P, and the choice 
(56) is thus an unacceptable one. For s = -y we must choose ô as a linear 
combination of Ci and C2 alone, as was in fact done in section 5, by (80).

The fact that (56) is an invalid choice, if P is present as a symmetry 
operation, does not in any sense make the general conclusions of section 4 
invalid, since these only refer to the properties of and its represent
ations.

Considering now the requirement (114), we get a narrowing of the condit
ion on Â in passing from (82) to (83), namely that /. must be a constant 
times C3, in accordance with the actual choice (83).

The Hamiltonian (86) is then unaffected by P, and the description which 
we have constructed on the basis of section 5 is invariant under space 
inversion. This remains true also after the inclusion of the charge conjugation 
operation, since it is evident that C and P commute. We may thus extend 
the invariance group of the theory from tø x to tø

10. Time inversion

The problem of reversing the direction of lime has attracted much 
attention in the physical literature (see, e.g. Davies, 1974). To-day’s discus
sions of the problem are often based on the so-called time reversal operation 
T (see, e.g. Bjorken and Drell, 1964), originally introduced by Wigner 
(1932). Here, we shall define a simpler — and from a relativistic point of 
view more natural — operation, which we shall denote T' and call the time 
inversion operation.

The effect of T' on the external coordinates is to replace t by t and thus 
also p4 by -7)4. Hence, we get the following result for the operators (24) and 
(30) of the basic algebra for a spinless particle:

p >p, p^ ^ - px, l >l. k ^ k. (116)

The substitution (48) requires, that if T' is to be accepted as an invariance 
operation, then we must demand that
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H^-H. (117)

This condition is certainly not fulfilled for the Hamiltonian (49). The 
description of a spinless particle, as developed in section 3, is thus not in
variant under time inversion.

For a particle with spin we require that the internal generators be 
transformed similarly to (116), i.e.

s -> s, k — k. (118)

It is now easy to verify that all three relations (116)—(118), with H as given 
by (86), are satisfied, if we define T' as the process, which besides transform
ing t into — t changes the Euler angles according to the scheme:

a -> a + 7i, ß -> ti - ß, y -+ % — y. (119)

This corresponds to a 2-fold rotation about the e2-axis, just as (112) corres
ponds to a 2-fold rotation about the e3-axis. The effect on the Ci operators is:

Ci-*-Ci,  C2->C2, C3-*-C 3- (120)

The functions (17) are transformed thus:

Gi O3,

02 -> O4,
(121) 

03^-91,

G4 — O2 ,

Hence we obtain, from the explicit expressions (102):

T'Wi - ^3 = cos^ 03 -
c

I EI + nioc2
(^2 Oi ^+02) exp (nr • r/h) exp (11 E | t/h),

exp(«TT-r/h)exp(i | E\t/h).
(1

The functions *#3  and may, just as well as the function Ÿh and *7 72 in (103), 
be used as representatives for the function space Q. ^3 and ^4 are, in fact, 
equal to - *̂ 2 and Wi, respectively, with -ir substituted for it. The effect of 
T' on W3 and W4 is:

T'^3 =

T'^4 = -^2.
*)*•
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Hence, the time inversion operation converts a particle state into an anti
particle state and vice versa, I he velocity of the Lorentz frame associated 
with the particle being reversed during the operation.

Adding the time inversion operation to the operations of«i/\5fp, leads to 
the full inhomogeneous Lorentz group .T. The charge conjugation oper
ation commutes with T' just as it commutes with all other elements of«^”j5?, 
and the full invariance group is thus found to be x JF.

This important result justifies the introduction of T' and demonstrates 
the fundamental nature of this operation. To anchor it further, let us de
monstrate the consistent transformation properties of the 4-vectors of our 
theory, with respect to space and time inversion.

A 4-vector = (a, «4) is a set of four quantities satisfying a relation 
similar to (29), viz.

[^/LIV ’ flÅ ] = ~ (124)

The following expressions are readily found to correspond to 4-vectors:

æw = (r, ict),

Pfl =

Wfl ( P x * + 7>4 S, - p • S),

The matrices associated with the operators y^ and the basis (17) are, when 
i = i, identical with the y^ matrices of the conventional theory, in the notation 
of Dirac (1928) and e.g. Sakurai (1967). The y' operators turn up in a 
natural manner, when (47) is multiplied from the left with C3, to give the 
equation

(moc += 0. (126)

Using the properties of the P and T' operations as described above, it is 
easily seen that x^p^ and y' transform according to the scheme:

(23)

(24)

(62a)

(125)

P(a, o4) = (- a, CI4), 

T' (a, a4) = (a, - a4), (127)

whereas iv„ transforms as follows:

7J(w, 1P4) = (w, - m4), 

T' (w, in4) = (- w, u?4).
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These transformation properties characterize xfl, and as ordinary 
4-vectors, as a pseudo-4-vector. For all four vectors it holds, that

PT'afi = 7''7% = - V (129)

The “strong inversion” operation PT' = T'P will be the subject matter of the 
following section.

The possibility of defining a time inversion operation with the above 
properties in the case of a Dirac particle suggests, that a similar operator 
may be defined for other elementary systems as well. Let us, for the moment, 
assume that this is possible for the electromagnetic field. This field is 
characterized by a 4-vector

= (J,^), (130)

where A is the vector potential and cp the scalar potential. It is well known, 
that

P(A,i(p) = (- A,icp), (131)

and comparison with (127) makes us therefore expect, that

T'(A,ùp) = (A, - i(p). (132)

Suppose now, that the source of is a charged Dirac particle. The 
field associated with the corresponding antiparticle must then be (A, - i(p\ 
In other words, a particle and its associated antiparticle must have equal, 
but opposite, charges.

That this is indeed the case is of course well known. The interesting 
thing in the present context is, that we have tied the conclusion to the pro
perties of the full Lorentz group, rather than to the properties of the charge 
conjugation operation. A more appropriate name for the latter, is, in fact, the 
often used alternative: the particle-antiparticle conjugation operation.

11. Strong inversion, alias the PCT-operation

Combining the operations P and T' leads to what we shall call the strong 
inversion operation, I. It changes x^ into while the Euler angles 
undergo the transformation corresponding to a 2-fold rotation about the 
ei-axis, i.e.

a + 7t, ß -> n - ß, y -+ — y. (133)
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Hence, wc get:

The functions (17) are transformed thus:

/[ØIØ2Ø3O4)] = — I [03 04 01 02 ],

and for the general function (108) we obtain:

1 2 Vi (æ/z)
i

0

6 [01 02 03 04]
0
1

0 1 0

0 0 1

0 0 0

0 10 0

Vl(- ætz)

Va(- -r/z) 

Vs(-æ/z)

V4(- æiz)

(134)

(135)

(136)

The 4x4matrix in (136) is the matrix representative of the operator It 
is readily identified with the matrix

75 = 71/27374 (137)
of the conventional theory.

A comparison with e.g. Bjorken and Drell (1964) shows us now, that 
I has the same effect on a general wavefunction as the so-called PCT- 
operation. Hence, we have arrived at an alternative and simple interpretation 
of this fundamental operation.

The relation between the operations P, T', I and the 2-fold rotations 
about the three internal axes of the rotor is a nice illustration of the group 
theoretical fact, that the factor group of ST with respect to the invariant 
subgroup '0 is isomorphic with the group D^.

12. Wigner’s time reversal operation

Combining the operation T' and C leads to the operation

T = CT', (138)

which we shall now identify as Wigner’s time reversal operation. The effect 
of C is to leave x^ unaffected, while each operator of the basic algebra (and 
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thus also H) changes its sign. The effect of T' was considered in section 10. 
Hence we get:

r-> r, /-> — /,
P ~ p, p4~> pi, II~> II,

1 + I, k>ks> S,K->K,

41W 41, ^2-*  — 42, 43 ~*  4.3 •

(139)

found by combining (121)

(140)7’2öi^i(r, 0 = [0102 03 04] 
i

The effect on the general function 
with (109):

(108) is

0 1 0 0" - 0”
-1 0 0 0 - 0

0 0 0 1 V?3 (r> 0

0 0 -1 0 vi(r, - o

bhe 4x4 matrix in (140) is equal to t times the matrix representative of s2, 
and equal to the matrix — yi/3 of the conventional theory.

Thus, the relations (139) and (140) establish the assertion, that the 
complicated operation known as Wigner’s time reversal operation may be 
considered as a compound operation, made up of the two elementary 
operations C and T'.

With this result, we have seen that all the symmetry operations of the 
conventional theory have a simple representation within the rotor model. It 
is further worth-while noting, that this model leads to a clear understanding 
of the way in which antilinear operators enter the theory: All operations of 
the group correspond to linear operators, the fundamental antilinear 
operation being the operation C.

13. Some general remarks

The rotor model as developed so far is a one-particle model, and the 
comparisons we have made with the conventional theory have, accordingly, 
not included references to discussions based on field theoretical descriptions. 
There is, of course, a very extensive literature on the symmetries of the 
quantized Dirac field (see e.g. Kemmer el al., 1959; Muirhead, 1965). This 
literature leaves the general impression, that an operation like the PCT 
operation has its roots in the connection between spin and statistics (Pauli, 
1955; Lüders, 1957). We have no reason to doubt that this is true in general, 
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but would like to stress that the PCT operation as it occurs in the present 
treatment is a very simple operation. The presence of the letter C in its 
designation is in fact misleading, since it appears as a genuine operation of 
the group ££, of which C is not a member.

As far as C itself is concerned, we may obtain a clearer understanding of 
its nature by tying it to the presence of the indicator i, which we have carried 
through as an unassigned quantity. This is, however, best discussed else
where.

Finally, we shall consider the ambiguity in sign of the first term of the 
Hamiltonian (86). We have so far developed the theory with the plus sign, 
but it may equally well be developed with the minus sign. The only difference 
in the resulting wavefunctions is, that the (r,f) dependent parts in (102) and 
(103) are interchanged. In the conventional theory one could talk about an 
interchange of the large and the small components of the wavefunction, and 
there would be no basis for believing that one had obtained anything but an 
alternative description of the same physical situation.

If, however, one adopts the rotor model, then there is no way of trans
forming the time-dependent wavefunctions corresponding to the two different 
signs into each other, and the two Hamiltonians must be considered as 
physically different, i.e. they must be associated with two different types of 
Dirac particles. It is, however, easy to see that the two types of particles will 
behave similarly in an electromagnetic field; the type of interaction which 
can distinguish between them must be of a different nature.

We are, of course, unable to settle the question as to whether such an 
interaction exists or not. If it does not, then one is free to choose either sign 
in the Hamiltonian. If, however, is does exist, then one might perhaps 
imagine a connection to the electron-muon problem.

14. Conclusion

The discussion of sections 7—12 illustrates (he type of natural inter
pretation one obtains by considering a Dirac particle as a quantum mechan
ical rotor. The preceding sections taught us, that the only type of behaviour 
that a relativistic, quantum mechanical rotor can adopt, is that of a Dirac 
particle.

Thus, we arrive at the conclusion, that the Dirac particle and the quantum 
mechanical rotor are identical dynamical systems. In other words: a Dirac 
particle is neither more nor less than a particle, for which it is possible to 
talk about an orientation in space.
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